首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:On data collection time by an electronic nose
  • 本地全文:下载
  • 作者:Piotr Borowik ; Leszek Adamowicz ; Rafał Tarakowski
  • 期刊名称:International Journal of Electrical and Computer Engineering
  • 电子版ISSN:2088-8708
  • 出版年度:2021
  • 卷号:11
  • 期号:6
  • 页码:4767-4773
  • DOI:10.11591/ijece.v11i6.pp4767-4773
  • 语种:English
  • 出版社:Institute of Advanced Engineering and Science (IAES)
  • 摘要:We use electronic nose data of odor measurements to build machine learning classification models. The presented analysis focused on determining the optimal time of measurement, leading to the best model performance. We observe that the most valuable information for classification is available in data collected at the beginning of adsorption and the beginning of the desorption phase of measurement. We demonstrated that the usage of complex features extracted from the sensors’ response gives better classification performance than use as features only raw values of sensors’ response, normalized by baseline. We use a group shuffling cross-validation approach for determining the reported models’ average accuracy and standard deviation.
  • 关键词:Electronic nose;Measurement time;Multisensor measurement;Odor classification
国家哲学社会科学文献中心版权所有