期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2022
卷号:12
期号:1
页码:756-769
DOI:10.11591/ijece.v12i1.pp756-769
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:Cognitive distraction is one of the several contributory factors in road accidents. A number of cognitive distraction detection methods have been developed. One of the most popular methods is based on physiological measurement. Head orientation, gaze rotation, blinking and pupil diameter are among popular physiological parameters that are measured for driver cognitive distraction. In this paper, lips and eyebrows are studied. These new features on human facial expression are obvious and can be easily measured when a person is in cognitive distraction. There are several types of movement on lips and eyebrows that can be captured to indicate cognitive distraction. Correlation and classification techniques are used in this paper for performance measurement and comparison. Real time driving experiment was setup and faceAPI was installed in the car to capture driver’s facial expression. Linear regression, support vector machine (SVM), static Bayesian network (SBN) and logistic regression (LR) are used in this study. Results showed that lips and eyebrows are strongly correlated and have a significant role in improving cognitive distraction detection. Dynamic Bayesian network (DBN) with different confidence of levels was also used in this study to classify whether a driver is distracted or not.
关键词:classification;cognitive distraction;correlation;looked but failed to see