期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2022
卷号:12
期号:2
页码:1916-1928
DOI:10.11591/ijece.v12i2.pp1916-1928
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:This paper aims to solve the nonlinear two-point fuzzy boundary value problem (TPFBVP) using approximate analytical methods. Most fuzzy boundary value problems cannot be solved exactly or analytically. Even if the analytical solutions exist, they may be challenging to evaluate. Therefore, approximate analytical methods may be necessary to consider the solution. Hence, there is a need to formulate new, efficient, more accurate techniques. This is the focus of this study: two approximate analytical methods-homotopy perturbation method (HPM) and the variational iteration method (VIM) is proposed. Fuzzy set theory properties are presented to formulate these methods from crisp domain to fuzzy domain to find approximate solutions of nonlinear TPFBVP. The presented algorithms can express the solution as a convergent series form. A numerical comparison of the mean errors is made between the HPM and VIM. The results show that these methods are reliable and robust. However, the comparison reveals that VIM convergence is quicker and offers a swifter approach over HPM. Hence, VIM is considered a more efficient approach for nonlinear TPFBVPs.