期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2022
卷号:12
期号:2
页码:2040-2046
DOI:10.11591/ijece.v12i2.pp2040-2046
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:An ensemble model has been proposed in this work by combining the extreme gradient boosting classification (XGBoost) model with support vector machine (SVM) for land use and land cover classification (LULCC). We have used the multispectral Landsat-8 operational land imager sensor (OLI) data with six spectral bands in the electromagnetic spectrum (EM). The area of study is the administrative boundary of the twin cities of Odisha. Data collected in 2020 is classified into seven land use classes/labels: river, canal, pond, forest, urban, agricultural land, and sand. Comparative assessments of the results of ten machine learning models are accomplished by computing the overall accuracy, kappa coefficient, producer accuracy and user accuracy. An ensemble classifier model makes the classification more precise than the other state-of-the-art machine learning classifiers.
关键词:Land use and land cover;Machine learning;Random forest;Remote sensing;Support vector machine;XGBoost