期刊名称:International Journal of Electrical and Computer Engineering
电子版ISSN:2088-8708
出版年度:2022
卷号:12
期号:3
页码:2802-2811
DOI:10.11591/ijece.v12i3.pp2802-2811
语种:English
出版社:Institute of Advanced Engineering and Science (IAES)
摘要:In recent years, the study of social networks and the analysis of these networks in various fields have grown significantly. One of the most widely used fields in the study of social networks is the issue of link prediction, which has recently been very popular among researchers. A link in a social network means communication between members of the network, which can include friendships, cooperation, writing a joint article or even membership in a common place such as a company or club. The main purpose of link prediction is to investigate the possibility of creating or deleting links between members in the future state of the network using the analysis of its current state. In this paper, three new similarities, degree neighbor similarity (DNS), path neighbor similarity (PNS) and degree path neighbor Similarity (DPNS) criteria are introduced using neighbor-based and path-based similarity criteria, both of which use graph structures. The results have been tested based on area under curve (AUC) and precision criteria on datasets and it shows well the superiority of the work over the criteria that only use the neighbor or the path.