首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Gaussian Rank Correlation and Regression
  • 本地全文:下载
  • 作者:Dante Amengual ; Enrique Sentana ; Zhanyuan Tian
  • 期刊名称:CEMFI Working Papers / Centro de Estudios Monetarios y Financieros, Madrid
  • 出版年度:2020
  • 卷号:2004
  • 语种:English
  • 出版社:Centro de Estudios Monetarios y Financieros, Madrid
  • 摘要:We study the statistical properties of Pearson correlation coefficients of Gaussian ranks, and Gaussian rank regressions - OLS applied to those ranks. We show that these procedures are fully efficient when the true copula is Gaussian and the margins are non-parametrically estimated, and remain consistent for their population analogues otherwise. We compare them to Spearman and Pearson correlations and their regression counterparts theoretically and in extensive Monte Carlo simulations. Empirical applications to migration and growth across US states, the augmented Solow growth model, and momentum and reversal effects in individual stock returns confirm that Gaussian rank procedures are insensitive to outliers.
国家哲学社会科学文献中心版权所有