首页    期刊浏览 2024年11月29日 星期五
登录注册

文章基本信息

  • 标题:Chemical Degradation of Indigo Potassium Tetrasulfonate Dye by Advanced Oxidation Processes
  • 本地全文:下载
  • 作者:Veronica Camargo 1 , Elba Ortiz 1* , Hugo Solis 1 , Carlos M. Cortes-Romero 2 , Sandra Loera-Serna 1 , Carlos J. Perez
  • 期刊名称:Journal of Environmental Protection
  • 印刷版ISSN:2152-2197
  • 电子版ISSN:2152-2219
  • 出版年度:2014
  • 卷号:05
  • 期号:13
  • 页码:1342-1351
  • DOI:10.4236/jep.2014.513128
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:The experimental degradation of a water soluble dye, potassium indigo tetrasulfonate salt, has been studied using stand-alone ozonation and photocatalytic oxidation process. Progress of the dye oxidation was followed by UV-VIS spectrophotometric measurements at controlled operating conditions. The organic content of reaction samples was measured to verify the process efficiency in dye mineralization. According to current results, almost complete color removal was obtained for ozonation within about 1 h reaction time. The reduction of the organic load was almost 80% from its original while initial sulphur content decreased to 32.5%. Dye conversion of 100% was obtained by means of a photocatalytic process using TiO2 as catalyst at 294 nm irradiated UV light. This complete color removal for the catalytic process was observed within 7 min of reaction time. The calculated initial rate of reaction of photocatalysis treatment was 8 times faster than that of ozonolysis. However, the remaining organic load of photocatalysis was almost 88% from its original while the final sulphur content was 27.3%. This contrasting behavior of the performance of the type of oxidation process stressed importance of physicochemical phenomena and intermediates molecules present during dye degradation. An insightful and mechanistic aspect of the dye oxidation was developed by performing quantumchemical calculations.
  • 关键词:Indigo Potassium Tetrasulfonate; Advanced Oxidation Processes; Chemical Degradation; Theoretical Calculations
国家哲学社会科学文献中心版权所有