首页    期刊浏览 2024年11月09日 星期六
登录注册

文章基本信息

  • 标题:Metadata based Classification Techniques for Knowledge Discovery from Facebook Multimedia Database
  • 本地全文:下载
  • 作者:Prashant Bhat ; Pradnya Malaganve
  • 期刊名称:International Journal of Intelligent Systems and Applications
  • 印刷版ISSN:2074-904X
  • 电子版ISSN:2074-9058
  • 出版年度:2021
  • 卷号:13
  • 期号:4
  • DOI:10.5815/ijisa.2021.04.04
  • 语种:English
  • 出版社:MECS Publisher
  • 摘要:Classification is a parlance of Data Mining to genre data of different kinds in particular classes. As we observe, social media is an immense manifesto that allows billions of people share their thoughts, updates and multimedia information as status, photo, video, link, audio and graphics. Because of this flexibility cloud has enormous data. Most of the times, this data is much complicated to retrieve and to understand. And the data may contain lot of noise and at most the data will be incomplete. To make this complication easier, the data existed on the cloud has to be classified with labels which is viable through data mining Classification techniques. In the present work, we have considered Facebook dataset which holds meta data of cosmetic company’s Facebook page. 19 different Meta Data are used as main attributes. Out of those, Meta Data ‘Type’ is concentrated for Classification. Meta data ‘Type’ is classified into four different classes such as link, status, photo and video. We have used two favored Classifiers of Data Mining that are, Bayes Classifier and Decision Tree Classifier. Data Mining Classifiers contain several classification algorithms. Few algorithms from Bayes and Decision Tree have been chosen for the experiment and explained in detail in the present work.  Percentage split method is used to split the dataset as training and testing data which helps in calculating the Accuracy level of Classification and to form confusion matrix. The Accuracy results, kappa statistics, root mean squared error, relative absolute error, root relative squared error and confusion matrix of all the algorithms are compared, studied and analyzed in depth to produce the best Classifier which can label the company’s Facebook data into appropriate classes thus Knowledge Discovery is the ultimate goal of this experiment.
  • 关键词:Data Mining;Meta Data;Classification;Bayes Classifier;Decision Tree Classifier
国家哲学社会科学文献中心版权所有