期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2021
卷号:12
期号:7
DOI:10.14569/IJACSA.2021.0120724
语种:English
出版社:Science and Information Society (SAI)
摘要:Cloud computing is a vital paradigm of emerging technologies. It provides hardware, software, and development platforms to end-users as per their demand. Task scheduling is an exciting job in the cloud computing environment. Tasks can be divided into two categories dependent and independent. Independent tasks are not connected to any type of parent-child concept. Various meta-heuristic algorithms have come into force to schedule the independent tasks. In this, paper a hybrid HC-CSO algorithm has been simulated using independent tasks. This hybrid algorithm has been designed by using the HEFT algorithm, Self-Motivated Inertia Weight factor, and standard Cat Swarm Optimization algorithm. The Crow Search algorithm has been applied to overcome the problem of premature convergence and to avoid the H-CSO algorithm getting stuck in the local fragment. The simulation was carried out using 500-1300 random lengths independent tasks and it was found that the H-CSO algorithm has beaten PSO, ACO, and CSO algorithms whereas the hybrid algorithm HC-CSO is working fine despite Cat Swarm Optimization, Particle Swarm Optimization, and H-CSO algorithm in the name of processing cost and makespan. For all scenarios, the HC-CSO algorithm is found overall 4.15% and 7.18% efficient than the H-CSO and standard CSO respectively in comparison to the makespan and in case of computation cost minimization, 9.60% and 14.59% than the H-CSO and the CSO, respectively.