首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Deep Learning Predictive Model for Colon Cancer Patient using CNN-based Classification
  • 本地全文:下载
  • 作者:Zarrin Tasnim ; Sovon Chakraborty ; F. M. Javed Mehedi Shamrat
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2021
  • 卷号:12
  • 期号:8
  • DOI:10.14569/IJACSA.2021.0120880
  • 语种:English
  • 出版社:Science and Information Society (SAI)
  • 摘要:In recent years, the area of Medicine and Healthcare has made significant advances with the assistance of computational technology. During this time, new diagnostic techniques were developed. Cancer is the world's second-largest cause of mortality, claiming the lives of one out of every six individuals. The colon cancer variation is the most frequent and lethal of the numerous kinds of cancer. Identifying the illness at an early stage, on the other hand, substantially increases the odds of survival. A cancer diagnosis may be automated by using the power of Artificial Intelligence (AI), allowing us to evaluate more cases in less time and at a lower cost. In this research, CNN models are employed to analyse imaging data of colon cells. For colon cell image classification, CNN with max pooling and average pooling layers and MobileNetV2 models are utilized. To determine the learning rate, the models are trained and evaluated at various Epochs. It's found that the accuracy of the max pooling and average pooling layers is 97.49% and 95.48%, respectively. And MobileNetV2 outperforms the other two models with the most remarkable accuracy of 99.67% with a data loss rate of 1.24.
  • 关键词:Colon cancer; MobileNetV2; Max pooling; Average pooling; data loss; accuracy
国家哲学社会科学文献中心版权所有