期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
印刷版ISSN:2158-107X
电子版ISSN:2156-5570
出版年度:2022
卷号:13
期号:1
DOI:10.14569/IJACSA.2022.0130138
语种:English
出版社:Science and Information Society (SAI)
摘要:Plant diseases cause low agricultural productivity. Plant diseases are challenging to control and identify by the majority of farmers. In order to reduce future losses, early disease diagnosis is necessary. This study looks at how to identify tomato plant leaf disease using machine learning techniques, including the Fuzzy Support Vector Machine (Fuzzy-SVM), Convolution Neural Network (CNN), and Region-based Convolution Neural Network (R-CNN). The findings were confirmed using images of tomato leaves with six diseases and healthy samples. Image scaling, color thresholding, flood filling approaches for segmentation, gradient local ternary pattern, and Zernike moments’ features are used to train the pictures. R-CNN classifiers are used to classify the illness kind. The classification methods of Fuzzy SVM and CNN are analyzed and compared with R-CNN to determine the most accurate model for plant disease prediction. The R-CNN-based Classifier has the most remarkable accuracy of 96.735 percent compared to the other classification approaches.
关键词:Fuzzy Support Vector Machine (SVM); Convolution Neural Network (CNN); Region-based Convolution Neural Network (R-CNN); color thresholding; flood filling