首页    期刊浏览 2024年11月26日 星期二
登录注册

文章基本信息

  • 标题:Deep Multi View Spatio Temporal Spectral Feature Embedding on Skeletal Sign Language Videos for Recognition
  • 本地全文:下载
  • 作者:SK. Ashraf Ali ; M. V. D. Prasad ; P. Praveen Kumar
  • 期刊名称:International Journal of Advanced Computer Science and Applications(IJACSA)
  • 印刷版ISSN:2158-107X
  • 电子版ISSN:2156-5570
  • 出版年度:2022
  • 卷号:13
  • 期号:4
  • DOI:10.14569/IJACSA.2022.0130494
  • 语种:English
  • 出版社:Science and Information Society (SAI)
  • 摘要:To build a competitive global view from multiple views which will represent all the views within a class label is the primary objective of this work. The first phase involves the extraction of spatio temporal features from videos of skeletal sign language using a 3D convolutional neural network. In phase two, the extracted spatio temporal features are ensembled into a latent low dimensional subspace for embedding in the global view. This is achieved by learning the weights of the linear combination of Laplacian eigenmaps of multiple views. Subsequently, the constructed global view is applied as training data for sign language recognition.
  • 关键词:Laplacian eigenmaps; 3D convolutional networks; sign language recognition; multi view; skeletal data
国家哲学社会科学文献中心版权所有