首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Design of ASIC and FPGA system with Supervised Machine Learning Algorithms for Solar Particle Event Hourly Prediction
  • 本地全文:下载
  • 作者:Rijad Sarić ; Junchao Chen ; Edhem Čustović
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:4
  • 页码:230-235
  • DOI:10.1016/j.ifacol.2022.06.038
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe magnitude of soft error rate (SER) of integrated circuits (ICs) utilized in space missions is jeopardized due to the inconsistent intensity of radiation exposure. To protect critical electronic elements and ensure desired system performance, it is necessary to establish the real-time detection of space particle events (SPE). This research study assesses eight supervised machine learning algorithms by varying history data length (3 to 24 hours) to predict the occurrence of SPE one hour ahead. Customized SPE hourly predictor based on logistic regression is chosen for hardware implementation owing to high prediction accuracy (96.35%) as well as simplicity. After that, the optimal prototype design of the logistic regression algorithm is implemented on Field Programmable Gate Array (FPGA) with affordable hardware footprint. Finally, the digital design tested on FPGA is simulated to generate an application-specific integrated circuit (ASIC) chip layout (industrial 130 nm) integrated with SPE hourly predictor.
  • 关键词:KeywordsSolar Particle EventASICFPGAsupervised machine learning
国家哲学社会科学文献中心版权所有