摘要:To improve our understanding of the influence of tropical cyclones (TCs) on coastal flooding, the relationships between storm surge and TC characteristics are analyzed for 12 sites along the east coast of the United States. This analysis offers a unique perspective by first examining the relationship between the characteristics of TCs and their resulting storm surge and then determining the probabilities of storm surge associated with TCs based on exceeding certain TC characteristic thresholds. Using observational data, the statistical dependencies of storm surge on TCs are examined for these characteristics: TC proximity, intensity, path angle, and propagation speed, by applying both exponential and linear fits to the data. At each tide gauge along the east coast of the United States, storm surge is influenced differently by these TC characteristics, with some locations more strongly influenced by TC intensity and others by TC proximity. The correlation for individual and combined TC characteristics increases when conditional sorting is applied to isolate strong TCs close to a location. The probabilities of TCs generating surge exceeding specific return levels (RLs) are then analyzed for TCs passing within 500 km of a tide gauge, where between 6 % and 28 % of TCs were found to cause surge exceeding the 1-year RL. If only the closest and strongest TCs are considered, the percentage of TCs that generate surge exceeding the 1-year RL is between 30 % and 70 % at sites north of Sewell's Point, VA, and over 65 % at almost all sites south of Charleston, SC. When examining storm surge produced by TCs, single-variable regression provides a good fit, while multi-variable regression improves the fit, particularly when focusing on TC proximity and intensity, which are, probabilistically, the two most influential TC characteristics on storm surge.