期刊名称:International Journal of Distributed Sensor Networks
印刷版ISSN:1550-1329
电子版ISSN:1550-1477
出版年度:2021
卷号:17
期号:12
页码:1-12
DOI:10.1177/15501477211059934
语种:English
出版社:Hindawi Publishing Corporation
摘要:Policy gradient methods are effective means to solve the problems of mobile multimedia data transmission in Content Centric Networks. Current policy gradient algorithms impose high computational cost in processing high-dimensional data. Meanwhile, the issue of privacy disclosure has not been taken into account. However, privacy protection is important in data training. Therefore, we propose a randomized block policy gradient algorithm with differential privacy. In order to reduce computational complexity when processing high-dimensional data, we randomly select a block coordinate to update the gradients at each round. To solve the privacy protection problem, we add a differential privacy protection mechanism to the algorithm, and we prove that it preserves the ε-privacy level. We conduct extensive simulations in four environments, which are CartPole, Walker, HalfCheetah, and Hopper. Compared with the methods such as important-sampling momentum-based policy gradient, Hessian-Aided momentum-based policy gradient, REINFORCE, the experimental results of our algorithm show a faster convergence rate than others in the same environment.