首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Effect of different voxel sizes on the accuracy of CBCT measurements of trabecular bone microstructure: A comparative micro-CT study
  • 本地全文:下载
  • 作者:Mahmure Ayşe Tayman ; Kıvanç Kamburoğlu ; Mert Ocak
  • 期刊名称:Imaging Science in Dentistry
  • 印刷版ISSN:2233-7822
  • 出版年度:2022
  • 卷号:52
  • 期号:2
  • 页码:171-179
  • DOI:10.5624/isd.20220025
  • 语种:English
  • 出版社:Korean Academy of Oral and Maxillofacial Radiology
  • 摘要:Purpose The aim of this study was to assess the accuracy of cone-beam computed tomographic (CBCT) images obtained using different voxel sizes in measuring trabecular bone microstructure in comparison to micro-CT. Materials and Methods Twelve human skull bones containing posterior-mandibular alveolar bone regions were analyzed. CBCT images were obtained at voxel sizes of 0.075 mm (high: HI) and 0.2 mm (standard: Std), while micro-CT imaging used voxel sizes of 0.06 mm (HI) and 0.12 mm (Std). Analyses were performed using CTAn software with the standardized automatic global threshold method. Intraclass correlation coefficients were used to evaluate the consistency and agreement of paired measurements for bone volume (BV), percent bone volume (BV/TV), bone surface (BS), trabecular thickness (TbTh), trabecular separation (TbSp), trabecular number (TbN), trabecular pattern factor (TbPf), and structure model index (SMI). Results When compared to micro-CT, CBCT images had higher BV, BV/TV, and TbTh values, while micro-CT images had lower BS, TbSp, TbN, TbPf, and SMI values ( P<0.05). The BV, BV/BT, TbTh, and TbSp variables were higher with Std voxels, whereas the BS, TbPf, and SMI variables were higher with HI voxels for both imaging methods. For each imaging modality and voxel size evaluated, BV, BS, and TbTh were significantly different ( P<0.05). TbN, TbPf, and SMI showed statistically significant differences between imaging methods ( P<0.05). The consistency and absolute agreement between micro-CT and CBCT were excellent for all variables. Conclusion This study demonstrated the potential of high-resolution CBCT imaging for quantitative bone morphometry assessment.
  • 关键词:enX-Ray MicrotomographyCone-Beam Computed TomographyTrabecular BoneMandible
国家哲学社会科学文献中心版权所有