首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Real-time visualization of mRNA synthesis during memory formation in live mice
  • 本地全文:下载
  • 作者:Byung Hun Lee ; Jae Youn Shim ; Hyungseok C. Moon
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:27
  • DOI:10.1073/pnas.2117076119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance Arc is one of the genes that are rapidly transcribed by neuronal activity and thus used as a marker for memory trace or engram cells. However, the dynamics of engram cell populations is not well-known because of the difficulty in monitoring the rapid and transient gene expression in live animals. Using a mouse model in which endogenous Arc messenger RNA (mRNA) is fluorescently labeled, we demonstrate that Arc-expressing neuronal populations have distinct dynamics in different brain regions and that only a small subpopulation that consistently expresses Arc during both memory encoding and retrieval exhibits context-specific calcium activity. This live-animal RNA-imaging technique will offer a powerful tool for connecting gene expression to neuronal activity patterns and to behavior. Memories are thought to be encoded in populations of neurons called memory trace or engram cells. However, little is known about the dynamics of these cells because of the difficulty in real-time monitoring of them over long periods of time in vivo. To overcome this limitation, we present a genetically encoded RNA indicator (GERI) mouse for intravital chronic imaging of endogenous Arc messenger RNA (mRNA)—a popular marker for memory trace cells. We used our GERI to identify Arc-positive neurons in real time without the delay associated with reporter protein expression in conventional approaches. We found that the Arc-positive neuronal populations rapidly turned over within 2 d in the hippocampal CA1 region, whereas ∼4% of neurons in the retrosplenial cortex consistently expressed Arc following contextual fear conditioning and repeated memory retrievals. Dual imaging of GERI and a calcium indicator in CA1 of mice navigating a virtual reality environment revealed that only the population of neurons expressing Arc during both encoding and retrieval exhibited relatively high calcium activity in a context-specific manner. This in vivo RNA-imaging approach opens the possibility of unraveling the dynamics of the neuronal population underlying various learning and memory processes.
  • 关键词:enArcmRNAin vivo imagingvirtual realitymemory traceengram
国家哲学社会科学文献中心版权所有