首页    期刊浏览 2024年11月25日 星期一
登录注册

文章基本信息

  • 标题:Graph-Based Learning for Leak Detection and Localisation in Water Distribution Networks*
  • 本地全文:下载
  • 作者:Garðar Örn Garðarsson ; Francesca Boem ; Laura Toni
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:6
  • 页码:661-666
  • DOI:10.1016/j.ifacol.2022.07.203
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe propose the application of geometric deep learning techniques to the challenging leak detection and isolation problem in water distribution networks (WDNs). Specifically, we train two Chebyshev polynomial kernel Graph Convolutional Networks for the task of prediction, and reconstruction of nodal pressures in a WDN. Comparing the two network outputs (a predicted healthy model state with a reconstructed observation) a residual signal is obtained and analysed to detect leakages. By exploiting topological properties in the proposed approach, leakage isolation is also performed. We benchmark our method on the BattLeDIM 2020 dataset.
  • 关键词:KeywordsFault detectiondiagnosiswater distribution systemsgeometric deep learning
国家哲学社会科学文献中心版权所有