摘要:AbstractDifferent from the traditional model-based fault diagnosis paradigm which is established upon the well-known observer design and analysis, a novel data-driven framework is proposed by combing systems modeling with fault detection for a class of 1-D unknown distributed parameter systems. The key idea is to transfer the on-line modeling error into the residual signal for fault detection. The proposed methodology only utilizes the I/O data and does not require extra knowledge of the system model, which increases its usability at large. Numerical simulations on a commonly used benchmark are presented for method validation.
关键词:KeywordsAIFDI methodsNeural approximations for optimal controlestimationFDI for nonlinear SystemsDistributed parameter systems