期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2022
卷号:119
期号:28
DOI:10.1073/pnas.2108471119
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
Giraffes are the tallest living animals, using their height to access food unavailable to their competitors. It is not clear how their specialized anatomy impacts their athletic ability. We made musculoskeletal models of the forelimbs from a giraffe and two close relatives and used motion-capture and force data to measure how efficient they are when walking in a straight line. A horse, for example, uses just 1 unit of muscle force to oppose 1 unit of force on the ground. Giraffe limbs are comparatively disadvantaged—their muscles must develop 3 units of force to oppose 1 unit of force on the ground. This explains why giraffes walk and run at modest speeds.
Giraffes (
Giraffa camelopardalis) possess specialized locomotor morphology, namely elongate and gracile distal limbs. While this contributes to their overall height and enhances feeding behavior, we propose that the combination of long limb segments and modest muscle lever arms results in low effective mechanical advantage (EMA, the ratio of in-lever to out-lever moment arms), when compared with other cursorial mammals. To test this, we used a combination of experimentally measured kinematics and ground reaction forces (GRFs), musculoskeletal modeling, and inverse dynamics to calculate giraffe forelimb EMA during walking. Giraffes walk with an EMA of 0.34 (±0.05 SD), with no evident association with speed within their walking gait. Giraffe EMA was about four times lower than expectations extrapolated from other mammals, ranging from 0.03 to 297 kg, and this provides further evidence that EMA plateaus or even diminishes in mammals exceeding horse size. We further tested the idea that limb segment length is a factor which determines EMA, by modeling the GRF and muscle moment arms in the extinct giraffid
Sivatherium giganteum and the other extant giraffid,
Okapia johnstoni. Giraffa and
Okapia shared similar EMA, despite a four to sixfold difference in body mass (
Okapia EMA = 0.38). In contrast,
Sivatherium, sharing a similar body mass with
Giraffa, had greater EMA (0.59), which we propose reflects behavioral differences, such as a somewhat increased capability for athletic performance. Our modeling approach suggests that limb length is a determinant of GRF moment arm magnitude and that unless muscle moment arms scale isometrically with limb length, tall mammals are prone to low EMA.