首页    期刊浏览 2024年10月06日 星期日
登录注册

文章基本信息

  • 标题:Rapid self-test of unprocessed viruses of SARS-CoV-2 and its variants in saliva by portable wireless graphene biosensor
  • 本地全文:下载
  • 作者:Deependra Kumar Ban ; Tyler Bodily ; Abhijith G. Karkisaval
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:28
  • DOI:10.1073/pnas.2206521119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance “Am I positive or negative?” Everyone wants to know the answer with speed and accuracy. Rapid and accurate at-home testing is the best defense against the COVID-19 pandemic and ensuing endemics. Current rapid tests are often imprecise, test for denatured and processed viral components, and lack specificity for new variants. We developed a simple at-home test using saliva swabs that answers “positive or negative” in minutes and transmits results to stakeholders. The test uses a DNA aptamer-derivatized graphene field-effect transistor (GFET) to detect unprocessed intact SARS-CoV-2 and its variants at levels as low as 7 to 10 viruses. This method is tunable and adaptable for early-stage detection of emerging viral infections as well as many diseases with accessible biofluids. We have developed a DNA aptamer-conjugated graphene field-effect transistor (GFET) biosensor platform to detect receptor-binding domain (RBD), nucleocapsid (N), and spike (S) proteins, as well as viral particles of original Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) coronavirus and its variants in saliva samples. The GFET biosensor is a label-free, rapid (≤20 min), ultrasensitive handheld wireless readout device. The limit of detection (LoD) and the limit of quantitation (LoQ) of the sensor are 1.28 and 3.89 plaque-forming units (PFU)/mL for S protein and 1.45 and 4.39 PFU/mL for N protein, respectively. Cognate spike proteins of major variants of concern (N501Y, D614G, Y453F, Omicron-B1.1.529) showed sensor response ≥40 mV from the control (aptamer alone) for fM to nM concentration range. The sensor response was significantly lower for viral particles and cognate proteins of Middle East Respiratory Syndrome (MERS) compared to SARS-CoV-2, indicating the specificity of the diagnostic platform for SARS-CoV-2 vs. MERS viral proteins. During the early phase of the pandemic, the GFET sensor response agreed with RT-PCR data for oral human samples, as determined by the negative percent agreement (NPA) and positive percent agreement (PPA). During the recent Delta/Omicron wave, the GFET sensor also reliably distinguished positive and negative clinical saliva samples. Although the sensitivity is lower during the later pandemic phase, the GFET-defined positivity rate is in statistically close alignment with the epidemiological population-scale data. Thus, the aptamer-based GFET biosensor has a high level of precision in clinically and epidemiologically significant SARS-CoV-2 variant detection. This universal pathogen-sensing platform is amenable for a broad range of public health applications and real-time environmental monitoring.
  • 关键词:enaptamergrapheneSARS-CoV-2COVID-19biosensor
国家哲学社会科学文献中心版权所有