首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Two light sensors decode moonlight versus sunlight to adjust a plastic circadian/circalunidian clock to moon phase
  • 本地全文:下载
  • 作者:Martin Zurl ; Birgit Poehn ; Dirk Rieger
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:22
  • DOI:10.1073/pnas.2115725119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance The moon provides highly reliable time information to organisms. Whereas sunlight is known to set daily animal timing systems, mechanistic insight into the impact of moonlight on such systems remains scarce. We establish that the marine bristleworm Platynereis dumerilii times the precise hours of mass spawning by integrating lunar light information into a plastic daily timing system able to run with circadian (∼24 h) or circalunidian (∼24.8 h) periodicity. The correct interpretation of moonlight is mediated by the interplay of two light sensors: a cryptochrome and a melanopsin ortholog provide information on light valence and moonrise time, respectively. Besides its ecological relevance, our work provides a plausible explanation for long-standing observations of light intensity–dependent differences in circadian clock periods. Many species synchronize their physiology and behavior to specific hours. It is commonly assumed that sunlight acts as the main entrainment signal for ∼24-h clocks. However, the moon provides similarly regular time information. Consistently, a growing number of studies have reported correlations between diel behavior and lunidian cycles. Yet, mechanistic insight into the possible influences of the moon on ∼24-h timers remains scarce. We have explored the marine bristleworm Platynereis dumerilii to investigate the role of moonlight in the timing of daily behavior. We uncover that moonlight, besides its role in monthly timing, also schedules the exact hour of nocturnal swarming onset to the nights’ darkest times. Our work reveals that extended moonlight impacts on a plastic clock that exhibits <24 h (moonlit) or >24 h (no moon) periodicity. Abundance, light sensitivity, and genetic requirement indicate that the Platynereis light receptor molecule r-Opsin1 serves as a receptor that senses moonrise, whereas the cryptochrome protein L-Cry is required to discriminate the proper valence of nocturnal light as either moonlight or sunlight. Comparative experiments in Drosophila suggest that cryptochrome’s principle requirement for light valence interpretation is conserved. Its exact biochemical properties differ, however, between species with dissimilar timing ecology. Our work advances the molecular understanding of lunar impact on fundamental rhythmic processes, including those of marine mass spawners endangered by anthropogenic change.
  • 关键词:enmolecular clockmoon lightchronobiologyreproductionmarine biology
国家哲学社会科学文献中心版权所有