首页    期刊浏览 2024年07月16日 星期二
登录注册

文章基本信息

  • 标题:Discovery of potent BET bromodomain 1 stereoselective inhibitors using DNA-encoded chemical library selections
  • 本地全文:下载
  • 作者:Ram K. Modukuri ; Zhifeng Yu ; Zhi Tan
  • 期刊名称:Proceedings of the National Academy of Sciences
  • 印刷版ISSN:0027-8424
  • 电子版ISSN:1091-6490
  • 出版年度:2022
  • 卷号:119
  • 期号:22
  • DOI:10.1073/pnas.2122506119
  • 语种:English
  • 出版社:The National Academy of Sciences of the United States of America
  • 摘要:Significance BET bromodomain inhibition is therapeutic in multiple diseases; however, pan-BET inhibitors have induced significant myelosuppression and gastrointestinal toxicity, perhaps due to inhibition of both tandem bromodomains (BD) of all BET family members. However, selective inhibition of just the first BD (BD1) phenocopies pan-BET inhibitor activity in preclinical models of cancer, other diseases, and, for BRDT, in the testes for a contraceptive effect. Here, we leveraged our multibillion-molecule collection of DNA-encoded chemical libraries (DECLs) to identify BET BD1-selective inhibitors of specific chirality with high potency, stability, and good cellular activity. Our findings highlight the robustness and efficiency of the DECL platform to identify specific, potent protein binders that have promise as potential anticancer and anti-inflammatory agents and as male contraceptives. BRDT, BRD2, BRD3, and BRD4 comprise the bromodomain and extraterminal (BET) subfamily which contain two similar tandem bromodomains (BD1 and BD2). Selective BD1 inhibition phenocopies effects of tandem BET BD inhibition both in cancer models and, as we and others have reported of BRDT, in the testes. To find novel BET BD1 binders, we screened >4.5 billion molecules from our DNA-encoded chemical libraries with BRDT-BD1 or BRDT-BD2 proteins in parallel. A compound series enriched only by BRDT-BD1 was resynthesized off-DNA, uncovering a potent chiral compound, CDD-724, with >2,000-fold selectivity for inhibiting BRDT-BD1 over BRDT-BD2. CDD-724 stereoisomers exhibited remarkable differences in inhibiting BRDT-BD1, with the R-enantiomer (CDD-787) being 50-fold more potent than the S-enantiomer (CDD-786). From structure–activity relationship studies, we produced CDD-956, which maintained picomolar BET BD1 binding potency and high selectivity over BET BD2 proteins and had improved stability in human liver microsomes over CDD-787. BROMO scan profiling confirmed the excellent pan-BET BD1 affinity and selectivity of CDD-787 and CDD-956 on BD1 versus BD2 and all other BD-containing proteins. A cocrystal structure of BRDT-BD1 bound with CDD-956 was determined at 1.82 Å and revealed BRDT-BD1–specific contacts with the αZ and αC helices that explain the high affinity and selectivity for BET BD1 versus BD2. CDD-787 and CDD-956 maintain cellular BD1-selectivity in NanoBRET assays and show potent antileukemic activity in acute myeloid leukemia cell lines. These BET BD1-specific and highly potent compounds are structurally unique and provide insight into the importance of chirality to achieve BET specificity.
  • 关键词:enBET bromodomainsBRDTDNA-encoded chemistry technologysmall-molecule inhibitors
国家哲学社会科学文献中心版权所有