期刊名称:Proceedings of the National Academy of Sciences
印刷版ISSN:0027-8424
电子版ISSN:1091-6490
出版年度:2022
卷号:119
期号:29
DOI:10.1073/pnas.2202875119
语种:English
出版社:The National Academy of Sciences of the United States of America
摘要:Significance
Acquiring high-fidelity ancient magnetic field intensity records from rocks is crucial for constraining the long-term evolution of Earth’s core. However, robust estimates of ancient field strengths are often difficult to recover due to alteration or nonideal behavior. We use rocks known as anorthosite that formed in the deep crust and were brought to the near surface where they acquired thermal remanent magnetizations. These rocks have experienced minimal postformation alteration and yield high-quality paleointensity estimates. In contrast to scenarios of a progressively decaying field leading up to a proposed late nucleation of Earth’s inner core, these data record a strong field 1.1 Ga. A strong field that persisted over a 14-My interval indicates the existence of appreciable power sources for Earth’s dynamo at this time.
Obtaining estimates of Earth’s magnetic field strength in deep time is complicated by nonideal rock magnetic behavior in many igneous rocks. In this study, we target anorthosite xenoliths that cooled and acquired their magnetization within ca. 1,092 Ma shallowly emplaced diabase intrusions of the North American Midcontinent Rift. In contrast to the diabase which fails to provide reliable paleointensity estimates, the anorthosite xenoliths are unusually high-fidelity recorders yielding high-quality, single-slope paleointensity results that are consistent at specimen and site levels. An average value of ∼83 ZAm
2 for the virtual dipole moment from the anorthosite xenoliths, with the highest site-level values up to ∼129 ZAm
2, is higher than that of the dipole component of Earth’s magnetic field today and rivals the highest values in the paleointensity database. Such high intensities recorded by the anorthosite xenoliths require the existence of a strongly powered geodynamo at the time. Together with previous paleointensity data from other Midcontinent Rift rocks, these results indicate that a dynamo with strong power sources persisted for more than 14 My ca. 1.1 Ga. These data are inconsistent with there being a progressive monotonic decay of Earth’s dynamo strength through the Proterozoic Eon and could challenge the hypothesis of a young inner core. The multiple observed paleointensity transitions from weak to strong in the Paleozoic and the Proterozoic present challenges in identifying the onset of inner core nucleation based on paleointensity records alone.