首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:The Hubble PanCET Program: A Metal-rich Atmosphere for the Inflated Hot Jupiter HAT-P-41b
  • 本地全文:下载
  • 作者:Kyle B.Sheppard ; Luis Welbanks ; Avi M.Mandell
  • 期刊名称:The Astronomical journal
  • 印刷版ISSN:0004-6256
  • 电子版ISSN:1538-3881
  • 出版年度:2021
  • 卷号:161
  • 期号:2
  • 页码:1-39
  • DOI:10.3847/1538-3881/abc8f4
  • 语种:English
  • 出版社:American Institute of Physics
  • 摘要:We present a comprehensive analysis of the 0.3–5 μm transit spectrum for the inflated hot Jupiter HAT-P-41b. The planet was observed in transit with Hubble STIS and WFC3 as part of the Hubble Panchromatic Comparative Exoplanet Treasury (PanCET) program, and we combine those data with warm Spitzer transit observations. We extract transit depths from each of the data sets, presenting the STIS transit spectrum (0.29–0.93 μm) for the first time. We retrieve the transit spectrum both with a free-chemistry retrieval suite (AURA) and a complementary chemical equilibrium retrieval suite (PLATON) to constrain the atmospheric properties at the day–night terminator. Both methods provide an excellent fit to the observed spectrum. Both AURA and PLATON retrieve a metal-rich atmosphere for almost all model assumptions (most likely O/H ratio of and , respectively); this is driven by a 4.9σ detection of H2O as well as evidence of gas absorption in the optical (>2.7σ detection) due to Na, AlO, and/or VO/TiO, though no individual species is strongly detected. Both retrievals determine the transit spectrum to be consistent with a clear atmosphere, with no evidence of haze or high-altitude clouds. Interior modeling constraints on the maximum atmospheric metallicity () favor the AURA results. The inferred elemental oxygen abundance suggests that HAT-P-41b has one of the most metal-rich atmospheres of any hot Jupiters known to date. Overall, the inferred high metallicity and high inflation make HAT-P-41b an interesting test case for planet formation theories.
国家哲学社会科学文献中心版权所有