首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:Tails: Chasing Comets with the Zwicky Transient Facility and Deep Learning
  • 本地全文:下载
  • 作者:Dmitry A.Duev ; Bryce T.Bolin ; Matthew J.Graham
  • 期刊名称:The Astronomical journal
  • 印刷版ISSN:0004-6256
  • 电子版ISSN:1538-3881
  • 出版年度:2021
  • 卷号:161
  • 期号:5
  • 页码:1-8
  • DOI:10.3847/1538-3881/abea7b
  • 语种:English
  • 出版社:American Institute of Physics
  • 摘要:We present Tails, an open-source deep-learning framework for the identification and localization of comets in the image data of the Zwicky Transient Facility (ZTF), a robotic optical time-domain survey currently in operation at the Palomar Observatory in California, USA. Tails employs a custom EfficientDet-based architecture and is capable of finding comets in single images in near real time, rather than requiring multiple epochs as with traditional methods. The system achieves state-of-the-art performance with 99% recall, a 0.01% false-positive rate, and a 1–2 pixel rms error in the predicted position. We report the initial results of the Tails efficiency evaluation in a production setting on the data of the ZTF Twilight survey, including the first AI-assisted discovery of a comet (C/2020 T2) and the recovery of a comet (P/2016 J3 = P/2021 A3).
国家哲学社会科学文献中心版权所有