首页    期刊浏览 2024年07月06日 星期六
登录注册

文章基本信息

  • 标题:Transit Search for Exoplanets around Alpha Centauri A and B with ASTERIA
  • 本地全文:下载
  • 作者:Akshata Krishnamurthy ; Mary Knapp ; Maximilian N.Günther
  • 期刊名称:The Astronomical journal
  • 印刷版ISSN:0004-6256
  • 电子版ISSN:1538-3881
  • 出版年度:2021
  • 卷号:161
  • 期号:6
  • 页码:1-10
  • DOI:10.3847/1538-3881/abf2c0
  • 语种:English
  • 出版社:American Institute of Physics
  • 摘要:Alpha Centauri is a triple star system with two Sun-like stars, α Cen A (V = 0.01) and B (V = 1.33), and a third fainter red dwarf star, Proxima Centauri. Most current transit missions cannot produce precision photometry of α Cen A and B as their detectors saturate for these very bright stars. The Arcsecond Space Telescope Enabling Research in Astrophysics (ASTERIA) was a technology demonstration mission that successfully demonstrated two key technologies necessary for precision photometry achieving line-of-sight fine-pointing stability of 0.5'' rms and focal plane temperature control of ±0.01 K over a period of 20 minutes. The payload consisted of a 6.7 cm aperture diameter refractive camera and used a scientific complementary metal-oxide semiconductor detector that enabled monitoring of the brightest stars without saturating. We obtained spatially unresolved (blended) observations of α Cen A and B during opportunistic science campaigns as part of ASTERIA's extended mission. The resulting 1σ photometric precision for the blended α Cen A and B data is 250 ppm (parts per million) per 9 s exposure. We do not find evidence of transits in the blended data. We establish limits for transiting exoplanets around both α Cen A and B using transit signal injection and recovery tests. We find that ASTERIA is sensitive to planets with radii as small as 3.0 R⊕ around α Cen A and 3.7 R⊕ around α Cen B, corresponding to signals of ∼500 ppm (signal-to-noise ratio = 5.0) in the blended data, with periods ranging from 0.5 to 6 days.
国家哲学社会科学文献中心版权所有