首页    期刊浏览 2024年10月07日 星期一
登录注册

文章基本信息

  • 标题:Where Is the Water? Jupiter-like C/H Ratio but Strong H2O Depletion Found on τ Boötis b Using SPIRou
  • 本地全文:下载
  • 作者:Stefan Pelletier ; Björn Benneke ; Antoine Darveau-Bernier
  • 期刊名称:The Astronomical journal
  • 印刷版ISSN:0004-6256
  • 电子版ISSN:1538-3881
  • 出版年度:2021
  • 卷号:162
  • 期号:2
  • 页码:1-19
  • DOI:10.3847/1538-3881/ac0428
  • 语种:English
  • 出版社:American Institute of Physics
  • 摘要:The present-day envelope of gaseous planets is a relic of how these giant planets originated and evolved. Measuring their elemental composition therefore presents a powerful opportunity to answer long-standing questions regarding planet formation. Obtaining precise observational constraints on the elemental inventory of giant exoplanets has, however, remained challenging owing to the limited simultaneous wavelength coverage of current space-based instruments. Here, we present thermal emission observations of the nontransiting hot Jupiter τ Boo b using the new wide wavelength coverage (0.95–2.50 μm) and high spectral resolution (R = 70,000) CFHT/SPIRou spectrograph. By combining a total of 20 hr of SPIRou data obtained over five nights in a full atmospheric retrieval framework designed for high-resolution data, we constrain the abundances of all the major oxygen- and carbon-bearing molecules and recover a noninverted temperature structure using a new free-shape, nonparametric temperature–pressure profile retrieval approach. We find a volume mixing ratio of log(CO) = − and a highly depleted water abundance of less than 0.0072 times the expected value for a solar composition envelope. Combined with upper limits on the abundances of CH4, CO2, HCN, TiO, and C2H2, this results in a gas-phase C/H ratio of × solar, consistent with the value of Jupiter, and an envelope C/O ratio robustly greater than 0.60, even when taking into account the oxygen that may be sequestered out of the gas phase. Combined, the inferred supersolar C/H, O/H, and C/O ratios on τ Boo b support a formation scenario beyond the water snowline in a disk enriched in CO owing to pebble drift.
国家哲学社会科学文献中心版权所有