首页    期刊浏览 2024年07月08日 星期一
登录注册

文章基本信息

  • 标题:Gemini/GMOS Transmission Spectroscopy of the Grazing Planet Candidate WD 1856+534 b
  • 本地全文:下载
  • 作者:Siyi Xu ; Hannah Diamond-Lowe ; Ryan J.MacDonald
  • 期刊名称:The Astronomical journal
  • 印刷版ISSN:0004-6256
  • 电子版ISSN:1538-3881
  • 出版年度:2021
  • 卷号:162
  • 期号:6
  • 页码:1-15
  • DOI:10.3847/1538-3881/ac2d26
  • 语种:English
  • 出版社:American Institute of Physics
  • 摘要:WD 1856+534 b is a Jupiter-sized, cool giant planet candidate transiting the white dwarf WD 1856+534. Here, we report an optical transmission spectrum of WD 1856+534 b obtained from ten transits using the Gemini Multi-Object Spectrograph. This system is challenging to observe due to the faintness of the host star and the short transit duration. Nevertheless, our phase-folded white light curve reached a precision of 0.12%. WD 1856+534 b provides a unique transit configuration compared to other known exoplanets: the planet is 8× larger than its star and occults over half of the stellar disk during mid-transit. Consequently, many standard modeling assumptions do not hold. We introduce the concept of a "limb darkening corrected, time-averaged transmission spectrum" and propose that this is more suitable than for comparisons to atmospheric models for planets with grazing transits. We also present a modified radiative transfer prescription. Though the transmission spectrum shows no prominent absorption features, it is sufficiently precise to constrain the mass of WD 1856+534 b to be >0.84 MJ (to 2σ confidence), assuming a clear atmosphere and a Jovian composition. High-altitude cloud decks can allow lower masses. WD 1856+534 b could have formed either as a result of common envelope evolution or migration under the Kozai–Lidov mechanism. Further studies of WD 1856+534 b, alongside new dedicated searches for substellar objects around white dwarfs, will shed further light on the mysteries of post-main-sequence planetary systems.
国家哲学社会科学文献中心版权所有