首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Robust Optimization for Network Decomposition of VQC with Scatter-Search-Predator-Prey Brain Storm Optimization
  • 本地全文:下载
  • 作者:Shota Ogawa ; Hiroyuki Mori
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:9
  • 页码:407-412
  • DOI:10.1016/j.ifacol.2022.07.071
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, a new method is proposed for optimizing the network decomposition of Voltage and Reactive Power Control (VQC). Power system uncertainties often occur due to load variations, generation output of renewable energy, charging/discharging of ESSs and EVs,etc.As a result, it is of main concern how power system operators deal with the uncertainties appropriately. This paper focuses on Modern-Heuristics-based Robust Optimization for power system decomposition of VQC in consideration of the uncertainties. In this paper, Scatter-Search-Predator-Prey Brain Storm Optimization (SSPPBSO) is proposed to evaluate better solutions by integrating Brain Storm Optimization (BSO) of high-performance Modern Heuristics with Predator-Prey and Scatter Search strategies. Robust Optimization plays a key role to handle uncertainties of power system conditions. The effectiveness of the proposed method is tested in the IEEE 57-node system.
  • 关键词:KeywordsUncertaintyRobustnessModern Heuristics OptimizationBrain Storm OptimizationScatter SearchPredator-Prey strategyGlobal optimizationDecomposition methodsPower system controlDecentralized controlVoltage control
国家哲学社会科学文献中心版权所有