首页    期刊浏览 2025年07月13日 星期日
登录注册

文章基本信息

  • 标题:Trajectory Tracking of Robotic Arm Based on Power Regulation of Actuator Using Neural Averaged Subgradient Control
  • 本地全文:下载
  • 作者:A. Hernandez-Sanchez ; C. Mireles-Perez ; A. Poznyak
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:9
  • 页码:99-104
  • DOI:10.1016/j.ifacol.2022.07.018
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThis study aims to present the design of robust control based on the integral sliding mode control version of the averaged sub-gradient for a robotic manipulator considering the dynamics of the direct current motor device driven by a power converter electrical system. The control action is sequentially operated, developing a class of back-stepping approaches, including the perturbed dynamics of the actuator. The proposed control strategy for solving the end-effector trajectory tracking problem in each stage implements the averaged subgradient-version of the integral sliding mode technique aided with an adaptive approximation of the robotic arm dynamics using an artificial neural network with differential evolution. The main result of this study shows that the minimization of the proposed functional leads to the optimal tracking regime. A numerical example proves the effectiveness of the suggested robust dynamic controller. The proposed controller exhibits a better tracking of the reference trajectory than the state feedback version.
  • 关键词:KeywordsAveraged sub-gradient controlIntegral sliding mode controlRobotic manipulatorMotion planning
国家哲学社会科学文献中心版权所有