首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:Neural Network Training Using Closed-Loop Data: Hazards and an Instrumental Variable (IVNN) Solution
  • 本地全文:下载
  • 作者:Johan Kon ; Marcel Heertjes ; Tom Oomen
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:12
  • 页码:182-187
  • DOI:10.1016/j.ifacol.2022.07.308
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractAn increasing trend in the use of neural networks in control systems is being observed. The aim of this paper is to reveal that the straightforward application of learning neural network feedforward controllers with closed-loop data may introduce parameter inconsistency that degrades control performance, and to provide a solution. The proposed method employs instrumental variables to ensure consistent parameter estimates. A nonlinear system example reveals that the developed instrumental variable neural network (IVNN) approach asymptotically recovers the optimal solution, while pre-existing approaches are shown to lead to inconsistent estimates.
  • 关键词:KeywordsFeedforward controlinstrumental variablesneural networks
国家哲学社会科学文献中心版权所有