首页    期刊浏览 2024年12月03日 星期二
登录注册

文章基本信息

  • 标题:Learning Linear Representations of Nonlinear Dynamics Using Deep Learning
  • 本地全文:下载
  • 作者:Akhil Ahmed ; Ehecatl Antonio del Rio-Chanona ; Mehmet Mercangöz
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:12
  • 页码:162-169
  • DOI:10.1016/j.ifacol.2022.07.305
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractWe propose a novel deep learning framework to discover a transformation of a nonlinear dynamical system to an equivalent higher dimensional linear representation. We demonstrate that the resulting learned linear representation accurately captures the dynamics of the original system for a wider range of conditions than standard linearization. As a result of this, we show that the learned linear model can subsequently be used for the successful control of the original system. We demonstrate this by applying the proposed framework to two examples; one from the literature and another more complex example in the form of a Continuous Stirred Tank Reactor (CSTR).
  • 关键词:KeywordsSystem IdentificationKoopman OperatorNonlinear ControlNeural Networks
国家哲学社会科学文献中心版权所有