首页    期刊浏览 2025年02月22日 星期六
登录注册

文章基本信息

  • 标题:LSTM-based model predictive control with discrete actuators for irrigation scheduling
  • 本地全文:下载
  • 作者:Bernard T. Agyeman ; Soumya R. Sahoo ; Jinfeng Liu
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:7
  • 页码:334-339
  • DOI:10.1016/j.ifacol.2022.07.466
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractThe development of well-devised irrigation scheduling methods is desirable from the perspectives of plant quality and water conservation. In this article, a model predictive control (MPC) with discrete actuators is developed for irrigation scheduling, where a long short-term memory (LSTM) model of the soil-water-atmosphere system is used to evaluate the objective of ensuring optimal water uptake in crops while minimizing total water consumption and irrigation costs. A heuristic method involving a sigmoid function is used in this framework to enhance the computational efficiency of the scheduler. The scheduling scheme is applied to a homogeneous field and the results indicate that the LSTM-based MPC with discrete actuators is able to prescribe optimal or near-optimal irrigation schedules that are typical of irrigation practice.
  • 关键词:KeywordsIrrigation schedulingmixed-integer model predictive controlheuristic methodlong short-term memory networkssigmoid function
国家哲学社会科学文献中心版权所有