首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A Novel Two-step Sparse Learning Approach for Variable Selection and Optimal Predictive Modeling
  • 本地全文:下载
  • 作者:Yiren Liu ; S. Joe Qin
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:7
  • 页码:57-64
  • DOI:10.1016/j.ifacol.2022.07.422
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, a two-step sparse learning approach is proposed for variable selection and model parameter estimation with optimally tuned hyperparameters in each step. In Step one, a sparse learning algorithm is applied on all data to produce a sequence of candidate subsets of selected variables by varying the hyperparameter value. In Step two, for each subset of the selected variables from Step one, Lasso, ridge regression, elastic-net, or adaptive Lasso is employed to find the optimal hyperparameters with the best cross-validation error. Among all subsets, the one with the overall minimum cross-validation error is selected as globally optimal. The effectiveness of the proposed approach is demonstrated using an industrial NOx emission dataset and the Dow challenge dataset to predict product impurity.
  • 关键词:KeywordsInferential modelingsparse statistical learningvariable selectionregularizationindustrial applications
国家哲学社会科学文献中心版权所有