首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Model Predictive Control for Blending Processes in Cement Plants
  • 本地全文:下载
  • 作者:Zhanhao Zhang ; Marcus Krogh Nielsen ; Guruprasath Muralidharan
  • 期刊名称:IFAC PapersOnLine
  • 印刷版ISSN:2405-8963
  • 出版年度:2022
  • 卷号:55
  • 期号:7
  • 页码:483-488
  • DOI:10.1016/j.ifacol.2022.07.490
  • 语种:English
  • 出版社:Elsevier
  • 摘要:AbstractIn this paper, we discuss model predictive control applied to blending processes. Blending processes are ubiquitous in the chemical process industries since reactants usually need to be mixed before entering a reactor. Many times, the blending is trivial as pure streams of reactants are mixed. We consider non-trivial blending problems in which non-pure streams with the reactants are to be mixed. The motivating example is the blending problem that occurs in cement production. The raw mix for the cement kiln must have a specified chemical composition. This composition is obtained by mixing piles with different chemical compositions and economic value such that the raw mix meets specifications in the cheapest possible way. We formulate the blending problem as a nonlinear optimization problem that can be approximated well as a convex quadratic optimization problem. We implement the corresponding nonlinear and linear model predictive controllers (NMPC, LMPC) using a continuous-time transfer function description that is realized as a discrete-time linear state space model. The controller obtains feedback by combining regularly sampled online measurements and irregularly sampled laboratory measurements using a time variant dynamic Kalman filter with memory. Numerical simulations demonstrate that the NMPC and LMPC have similar performance.
  • 关键词:KeywordsAdvanced Process ControlModel Predictive ControlBlendingCement Processes
国家哲学社会科学文献中心版权所有