首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Mixture Regression Estimators Using Multi-Auxiliary Variables and Attributes in Two-Phase Sampling
  • 本地全文:下载
  • 作者:John John Kung’u ; Grace Chumba ; Leo Odongo
  • 期刊名称:Open Journal of Statistics
  • 印刷版ISSN:2161-718X
  • 电子版ISSN:2161-7198
  • 出版年度:2014
  • 卷号:04
  • 期号:05
  • 页码:355-366
  • DOI:10.4236/ojs.2014.45035
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:In this paper, we have developed estimators of finite population mean using Mixture Regression estimators using multi-auxiliary variables and attributes in two-phase sampling and investigated its finite sample properties in full, partial and no information cases. An empirical study using natural data is given to compare the performance of the proposed estimators with the existing estimators that utilizes either auxiliary variables or attributes or both for finite population mean. The Mixture Regression estimators in full information case using multiple auxiliary variables and attributes are more efficient than mean per unit, Regression estimator using one auxiliary variable or attribute, Regression estimator using multiple auxiliary variable or attributes and Mixture Regression estimators in both partial and no information case in two-phase sampling. A Mixture Regression estimator in partial information case is more efficient than Mixture Regression estimators in no information case.
  • 关键词:Regression Estimator; Multiple Auxiliary Variables; Multiple Auxiliary Attributes; Two-Phase Sampling; Bi-Serial Correlation Coefficient
国家哲学社会科学文献中心版权所有