首页    期刊浏览 2024年11月30日 星期六
登录注册

文章基本信息

  • 标题:Change-Point Analysis of Survival Data with Application in Clinical Trials
  • 本地全文:下载
  • 作者:Xuan Chen 1 , Michael Baron
  • 期刊名称:Open Journal of Statistics
  • 印刷版ISSN:2161-718X
  • 电子版ISSN:2161-7198
  • 出版年度:2014
  • 卷号:04
  • 期号:09
  • 页码:663-677
  • DOI:10.4236/ojs.2014.49062
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:Effects of many medical procedures appear after a time lag, when a significant change occurs in subjects’ failure rate. This paper focuses on the detection and estimation of such changes which is important for the evaluation and comparison of treatments and prediction of their effects. Unlike the classical change-point model, measurements may still be identically distributed, and the change point is a parameter of their common survival function. Some of the classical change-point detection techniques can still be used but the results are different. Contrary to the classical model, the maximum likelihood estimator of a change point appears consistent, even in presence of nuisance parameters. However, a more efficient procedure can be derived from Kaplan-Meier estimation of the survival function followed by the least-squares estimation of the change point. Strong consistency of these estimation schemes is proved. The finite-sample properties are examined by a Monte Carlo study. Proposed methods are applied to a recent clinical trial of the treatment program for strong drug dependence.
  • 关键词:Change-Point Problem; Failure Rate; Kaplan-Meier Estimation; Least Squares Estimation; Maximum Likelihood Estimation; Strong Consistency; Survival Function
国家哲学社会科学文献中心版权所有