首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:Comparison of the Sampling Efficiency in Spatial Autoregressive Model
  • 本地全文:下载
  • 作者:Yoshihiro Ohtsuka 1 , Kazuhiko Kakamu
  • 期刊名称:Open Journal of Statistics
  • 印刷版ISSN:2161-718X
  • 电子版ISSN:2161-7198
  • 出版年度:2015
  • 卷号:05
  • 期号:01
  • 页码:10-20
  • DOI:10.4236/ojs.2015.51002
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:A random walk Metropolis-Hastings algorithm has been widely used in sampling the parameter of spatial interaction in spatial autoregressive model from a Bayesian point of view. In addition, as an alternative approach, the griddy Gibbs sampler is proposed by [1] and utilized by [2]. This paper proposes an acceptance-rejection Metropolis-Hastings algorithm as a third approach, and compares these three algorithms through Monte Carlo experiments. The experimental results show that the griddy Gibbs sampler is the most efficient algorithm among the algorithms whether the number of observations is small or not in terms of the computation time and the inefficiency factors. Moreover, it seems to work well when the size of grid is 100.
  • 关键词:Acceptance-Rejection Metropolis-Hastings Algorithm; Griddy Gibbs Sampler; Markov Chain Monte Carlo (MCMC); Random Walk Metropolis-Hastings Algorithm; Spatial Autoregressive Model
国家哲学社会科学文献中心版权所有