首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:A New Algorithm for Generalized Least Squares Factor Analysis with a Majorization Technique
  • 本地全文:下载
  • 作者:Kohei Adachi
  • 期刊名称:Open Journal of Statistics
  • 印刷版ISSN:2161-718X
  • 电子版ISSN:2161-7198
  • 出版年度:2015
  • 卷号:05
  • 期号:03
  • 页码:165-172
  • DOI:10.4236/ojs.2015.53020
  • 语种:English
  • 出版社:Scientific Research Publishing
  • 摘要:Factor analysis (FA) is a time-honored multivariate analysis procedure for exploring the factors underlying observed variables. In this paper, we propose a new algorithm for the generalized least squares (GLS) estimation in FA. In the algorithm, a majorization step and diagonal steps are alternately iterated until convergence is reached, where Kiers and ten Berge’s (1992) majorization technique is used for the former step, and the latter ones are formulated as minimizing simple quadratic functions of diagonal matrices. This procedure is named a majorizing-diagonal (MD) algorithm. In contrast to the existing gradient approaches, differential calculus is not used and only elmentary matrix computations are required in the MD algorithm. A simuation study shows that the proposed MD algorithm recovers parameters better than the existing algorithms.
  • 关键词:Exploratory Factor Analysis; Generalized Least Squares Estimation; Matrix Computations; Majorization
国家哲学社会科学文献中心版权所有