首页    期刊浏览 2024年09月02日 星期一
登录注册

文章基本信息

  • 标题:Inferred basal friction and mass flux affected by crystal-orientation fabrics
  • 本地全文:下载
  • 作者:Nicholas Rathmann ; David A. Lilien
  • 期刊名称:Journal of Glaciology
  • 印刷版ISSN:0022-1430
  • 电子版ISSN:1727-5652
  • 出版年度:2022
  • 卷号:68
  • 期号:268
  • 页码:236-252
  • DOI:10.1017/jog.2021.88
  • 语种:English
  • 出版社:Cambridge University Press
  • 摘要:We investigate the errors caused by neglecting the crystal-orientation fabric when inferring the basal friction coefficient field, and whether such errors can be alleviated by inferring an isotropic enhancement factor field to compensate for missing fabric information. We calculate the steady states that arise from ice flowing over a sticky spot and a bedrock bump using a vertical-slab numerical ice-flow model, consisting of a Weertman sliding law and the anisotropic Johnson flow law, coupled to a spectral fabric model of lattice rotation and dynamic recrystallisation. Given the steady or transient states as input for a canonical adjoint-based inversion, we find that Glen's isotropic flow law cannot necessarily be used to infer the true basal drag or friction coefficient field, which are obscured by the orientation fabric, thus potentially affecting vertically integrated mass fluxes. By inverting for an equivalent isotropic enhancement factor, a more accurate mass flux can be recovered, suggesting that joint inversions for basal friction and the isotropic flow-rate factor may be able to compensate for mechanical anisotropies caused by the fabric. Thus, in addition to other sources of rheological uncertainty, fabric might complicate attempts to relate subglacial conditions to basal properties inferred from an inversion relying on Glen's law.
  • 关键词:Anisotropic ice flow;ice rheology;subglacial processes;recrystallisation
国家哲学社会科学文献中心版权所有