首页    期刊浏览 2024年11月24日 星期日
登录注册

文章基本信息

  • 标题:A quantitative method for deriving salinity of subglacial water using ground-based transient electromagnetics
  • 本地全文:下载
  • 作者:Siobhan F. Killingbeck ; Christine F. Dow ; Martyn J. Unsworth
  • 期刊名称:Journal of Glaciology
  • 印刷版ISSN:0022-1430
  • 电子版ISSN:1727-5652
  • 出版年度:2022
  • 卷号:68
  • 期号:268
  • 页码:319-336
  • DOI:10.1017/jog.2021.94
  • 语种:English
  • 出版社:Cambridge University Press
  • 摘要:Liquid water can exist at temperatures well below freezing beneath glaciers and ice sheets, where subglacial water systems, fresh and saline, have been shown to host unique microbial ecosystems. Geophysical techniques sensitive to fluid-content contrasts, e.g. electromagnetics, can characterize subglacial water and its salinity. Here, we assess the ground-based transient electromagnetic (TEM) method for deriving the resistivity and salinity of subglacial water. We adapt an existing open-source Bayesian inversion algorithm, which uses independent depth constraints, to output posterior distributions of resistivity and pore fluid salinity with depth. A variety of synthetic models, including a thin (5 m), conductive (0.16 Ωm), hypersaline (147 psu) subglacial lake, are used to evaluate the TEM method for imaging under 800 m-thick ice. The study demonstrates that TEM methods can resolve conductive, saline bodies accurately using external depth constraints, for example, from radar or seismic data. The depth resolution of TEM can be limited beneath deep (>800 m), thick (>50 m) conductive, water bodies and additional constraints from passive electromagnetic (EM) methods could be used to reduce ambiguities in the TEM results. Subsequently, non-invasive active and passive EM methods could provide profound insights into remote aqueous systems under glaciers and ice sheets.
  • 关键词:Salinity;subglacial lake;subglacial water;transient electromagnetics
国家哲学社会科学文献中心版权所有