首页    期刊浏览 2025年07月02日 星期三
登录注册

文章基本信息

  • 标题:An Efficient Video Compression Framework using Deep Convolutional Neural Networks (DCNN)
  • 本地全文:下载
  • 作者:Kommerla Siva Kumar ; P. Bindhu Madhavi ; K. Janaki
  • 期刊名称:Journal of Computer Science
  • 印刷版ISSN:1549-3636
  • 出版年度:2022
  • 卷号:18
  • 期号:7
  • 页码:589-598
  • DOI:10.3844/jcssp.2022.589.598
  • 语种:English
  • 出版社:Science Publications
  • 摘要:In the current world, video streaming has grown in popularity and now accounts for a large percentage of internet traffic, making it challenging for service providers to broadcast videos at high rates while utilizing less storage space. To follow inefficient analytical coding design, previous video compression prototypes require non-learning-based designs. As a result, we propose a DCNN technique that integrates OFE-Net, MVE-Net, MVD-Net, MC-Net, RE-Net, and RD-Net for getting an ideal collection of frames by linking each frame pixel with preceding and following frames, then finding linked blocks and minimizing un needed pixels. In terms of MS-SIM and PSNR, the proposed DCNN approach produces good video quality at low bit rates.
  • 关键词:Deep Neural Networks;Encoding;Decoding;Video Compression
国家哲学社会科学文献中心版权所有