首页    期刊浏览 2024年12月01日 星期日
登录注册

文章基本信息

  • 标题:Autism Detection from 2D Transformed EEG Signal using Convolutional Neural Network
  • 本地全文:下载
  • 作者:Zahrul Jannat Peya ; M. A. H. Akhand ; Jannatul Ferdous Srabonee
  • 期刊名称:Journal of Computer Science
  • 印刷版ISSN:1549-3636
  • 出版年度:2022
  • 卷号:18
  • 期号:8
  • 页码:695-704
  • DOI:10.3844/jcssp.2022.695.704
  • 语种:English
  • 出版社:Science Publications
  • 摘要:Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder relating to speech complications, nonverbal and social communication, and repetitive behaviors. There is no remedy for ASD but early diagnosis, mediation, and supportive care can aid the development of language, conduct, and communication skills. As the cause of ASD is a neurodevelopmental disorder, its diagnosis based on brain function analyzing different brain signals, especially Electroencephalography (EEG), has drawn attention recently. Brain activity is recorded over time as an EEG signal from the scalp of a human and is used to investigate complicated neuropsychiatric disorders in the brain. In this study, the data from the EEG channels are translated into two-Dimensional (2D) form through correlation, and classification is performed using Convolutional Neural Networks (CNN), the well-known deep learning method for image analysis and classification. Two different CNN models are considered for classification purposes: Generic CNN and Residual Network (ResNet), a well-known deep CNN model. The proposed method with Resnet achieved 88% classification accuracy on a five-fold cross-validation mode, whereas it was 100 on 20% of test samples. Experimental evaluations using clinical EEG data revealed the efficacy of the proposed method outperforming other existing methods.
  • 关键词:Autism Spectrum Disorder;Convolutional Neural Network;Electroencephalography;Pearson’s Correlation Coefficient;Residual Neural Network
国家哲学社会科学文献中心版权所有