摘要:Agricultural landscapes support multiple functions and are of great importance for biodiversity. Heterogeneous agricultural mosaics of cropland and grassland commonly result from variable land use practices and ecosystem service demands. Switzerland's agricultural land use is considerably spatially heterogeneous due to strong variability in conditions, especially topography and climate, thus presenting challenges to automated agricultural mapping. Nationwide knowledge of the location of cropland and grassland is necessary for effective conservation and land use planning. We mapped the distribution of cropland and permanent grassland across Switzerland. We used several indices largely derived from Sentinel-2 satellite imagery captured over multiple growing seasons and parcel-based training data derived from landholder reporting. The mapping was conducted within Google Earth Engine using a random forest classifier. The resulting map has high accuracy in lowlands as well as in mountainous areas. The map will act as a base agricultural land cover dataset for researchers and practitioners working in agricultural areas of Switzerland and interested in land cover and landscape structure. The map as well as the training data and calculation algorithms (using Google Earth Engine) are freely available for download on the EnviDat platform https://doi.org/10.16904/envidat.205 (Pazúr et al., 2021).