首页    期刊浏览 2024年11月27日 星期三
登录注册

文章基本信息

  • 标题:LGHAP: the Long-term Gap-free High-resolution Air Pollutant concentration dataset, derived via tensor-flow-based multimodal data fusion
  • 本地全文:下载
  • 作者:Kaixu Bai ; Ke Li ; Mingliang Ma
  • 期刊名称:Earth System Science Data (ESSD)
  • 印刷版ISSN:1866-3508
  • 电子版ISSN:1866-3516
  • 出版年度:2022
  • 卷号:14
  • 期号:2
  • 页码:907-927
  • DOI:10.5194/essd-14-907-2022
  • 语种:English
  • 出版社:Copernicus
  • 摘要:Developing a big data analytics framework for generating the Long-term Gap-free High-resolution Air Pollutant concentration dataset (abbreviated as LGHAP) is of great significance for environmental management and Earth system science analysis. By synergistically integrating multimodal aerosol data acquired from diverse sources via a tensor-flow-based data fusion method, a gap-free aerosol optical depth (AOD) dataset with a daily 1 km resolution covering the period of 2000–2020 in China was generated. Specifically, data gaps in daily AOD imageries from the Moderate Resolution Imaging Spectroradiometer (MODIS) aboard Terra were reconstructed based on a set of AOD data tensors acquired from diverse satellites, numerical analysis, and in situ air quality measurements via integrative efforts of spatial pattern recognition for high-dimensional gridded image analysis and knowledge transfer in statistical data mining. To our knowledge, this is the first long-term gap-free high-resolution AOD dataset in China, from which spatially contiguous PM2.5 and PM10 concentrations were then estimated using an ensemble learning approach. Ground validation results indicate that the LGHAP AOD data are in good agreement with in situ AOD observations from the Aerosol Robotic Network (AERONET), with an R of 0.91 and RMSE equaling 0.21. Meanwhile, PM2.5 and PM10 estimations also agreed well with ground measurements, with R values of 0.95 and 0.94 and RMSEs of 12.03 and 19.56 µg m−3, respectively. The LGHAP provides a suite of long-term gap-free gridded maps with a high resolution to better examine aerosol changes in China over the past 2 decades, from which three major variation periods of haze pollution in China were revealed. Additionally, the proportion of the population exposed to unhealthy PM2.5 increased from 50.60 % in 2000 to 63.81 % in 2014 across China, which was then reduced drastically to 34.03 % in 2020. Overall, the generated LGHAP dataset has great potential to trigger multidisciplinary applications in Earth observations, climate change, public health, ecosystem assessment, and environmental management. The daily resolution AOD, PM2.5, and PM10 datasets are publicly available at https://doi.org/10.5281/zenodo.5652257 (Bai et al., 2021a), https://doi.org/10.5281/zenodo.5652265 (Bai et al., 2021b), and https://doi.org/10.5281/zenodo.5652263 (Bai et al., 2021c), respectively. Monthly and annual datasets can be acquired from https://doi.org/10.5281/zenodo.5655797 (Bai et al., 2021d) and https://doi.org/10.5281/zenodo.5655807 (Bai et al., 2021e), respectively. Python, MATLAB, R, and IDL codes are also provided to help users read and visualize these data.
国家哲学社会科学文献中心版权所有