首页    期刊浏览 2024年09月15日 星期日
登录注册

文章基本信息

  • 标题:Observations of the lower atmosphere from the 2021 WiscoDISCO campaign
  • 本地全文:下载
  • 作者:Patricia A. Cleary ; Gijs de Boer ; Joseph P. Hupy
  • 期刊名称:Earth System Science Data (ESSD)
  • 印刷版ISSN:1866-3508
  • 电子版ISSN:1866-3516
  • 出版年度:2022
  • 卷号:14
  • 期号:5
  • 页码:2129-2145
  • DOI:10.5194/essd-14-2129-2022
  • 语种:English
  • 出版社:Copernicus
  • 摘要:The mesoscale meteorology of lake breezes along Lake Michigan impacts local observations of high-ozone events. Previous manned aircraft and UAS observations have demonstrated non-uniform ozone concentrations within and above the marine layer over water and within shoreline environments. During the 2021 Wisconsin's Dynamic Influence of Shoreline Circulations on Ozone (WiscoDISCO-21) campaign, two UAS platforms, a fixed-wing (University of Colorado RAAVEN) and a multirotor (Purdue University DJI M210), were used simultaneously to capture lake breeze during forecasted high-ozone events at Chiwaukee Prairie State Natural Area in southeastern Wisconsin from 21–26 May 2021​​​​​​​. The RAAVEN platform (data DOI: https://doi.org/10.5281/zenodo.5142491, de Boer et al., 2021) measured temperature, humidity, and 3-D winds during 2 h flights following two separate flight patterns up to three times per day at altitudes reaching 500 m above ground level (a.g.l.). The M210 platform (data DOI: https://doi.org/10.5281/zenodo.5160346, Cleary et al., 2021a) measured vertical profiles of temperature, humidity, and ozone during 15 min flights up to six times per day at altitudes reaching 120 ma.g.l. near a Wisconsin DNR ground monitoring station (AIRS ID: 55-059-0019). This campaign was conducted in conjunction with the Enhanced Ozone Monitoring plan from the Wisconsin DNR that included Doppler lidar wind profiler observations at the site (data DOI: https://doi.org/10.5281/zenodo.5213039, Cleary et al., 2021b).
国家哲学社会科学文献中心版权所有