首页    期刊浏览 2024年11月28日 星期四
登录注册

文章基本信息

  • 标题:Employing artificial neural networks and fluorescence spectrum for food vegetable oils identification
  • 本地全文:下载
  • 作者:PRANOTO Wawan Joko ; AL-SHAWI Sarmad Ghazi ; CHETTHAMRONGCHAI Paitoon
  • 期刊名称:Food Science and Technology (Campinas)
  • 印刷版ISSN:0101-2061
  • 电子版ISSN:1678-457X
  • 出版年度:2022
  • 卷号:42
  • DOI:10.1590/fst.80921
  • 语种:English
  • 出版社:Sociedade Brasileira de Ciência e Tecnologia de Alimentos
  • 摘要:Vegetable oils (VOs) come in a wide range of flavors and trademarks. VOs are very similar in appearance, flavor, and taste, and it's frequently difficult to tell them from just by looking at them. Approaches for classifying these oils are sometimes expensive and time-intensive, and they frequently include analytical chemical techniques as well as mathematical algorithms like as Artificial Neural Networks (ANNs), Properties of Partial Least Squares (PLS), Principal Components Regression (PCR), and Principal Component Analysis (PCA) to enhance their effectiveness. Because of the large range of goods available, more productive techniques for qualifying, characterizing, and classifying these substances are required, as the ultimate cost should indicate the quality of the commodity that reaches the user. This study provides a technique for classifying VOs such as different manufacturers' soybean, corn, sunflower, and canola. This method utilized a Charge-Coupled Device (CCD) array sensor, a light emission diode, and a straightforward mathematical approach to capture the generated fluorescence spectrum (FS) in diluted oil. The spectrum classifications are performed using an ANN with three layers, each having four neurons. The approach can categorize VO and enables rapid network training with a 72% success rate utilizing only a few mathematical changes in the spectra data.
  • 关键词:vegetable oils quality;spectrometry;food;mathematical treatment
国家哲学社会科学文献中心版权所有