首页    期刊浏览 2025年02月18日 星期二
登录注册

文章基本信息

  • 标题:CYBER ATTACK DETECTION SYSTEM
  • 本地全文:下载
  • 作者:V.Geetha ; C.K.Gomathy
  • 期刊名称:International Journal of Early Childhood Special Education
  • 电子版ISSN:1308-5581
  • 出版年度:2022
  • 卷号:14
  • 期号:5
  • 页码:718-729
  • DOI:10.9756/INTJECSE/V14I5.71
  • 语种:English
  • 出版社:International Journal of Early Childhood Special Education
  • 摘要:Using spatiotemporal patterns, this letter provides a flexible machine learning detection strategy for cyberattacks in distribution systems. Based on system-wide observations, the graph Laplacian detects spatiotemporal patterns. When cyberattacks happen, a flexible Bayes classifier (BC) teaches spatiotemporal practices, resulting in a violation. Flexible BCs used online can potentially be used to detect cyberattacks. Through the use of common IEEE 13- and 123-node test feeds, the effectiveness of the devised approach is shown. In order to anticipate load under cyberattacks, this research presents a machine learning-based anomaly detection (MLAD) technique.
  • 关键词:Cyber attack detection;distribution systems;graph Laplacian;machine learning;spatiotemporal
国家哲学社会科学文献中心版权所有