摘要:Muitas pessoas no mundo sofrem com algum tipo de doença motora que atrapalha sua vida cotidiana. Uma das formas de melhorar a vida dessas pessoas é através da chamada Interface Cérebro Computador. No entanto, esse método até o momento deixa a desejar quanto a taxa de acerto de suas classificações. Este artigo visa explorar e comparar arquiteturas de redes neurais para classificação de sinais de Eletroencefalograma para Interface Cérebro Computador utilizando diversas arquiteturas diferentes, inclusive as pouco exploradas Redes de Valores Complexos, e testar novas possibilidades de funções de ativação. A metodologia de execução deste trabalho envolve o pré-processamento de dados de sinal EEG já rotulados, divisão em bandas de sinal com base nas faixas de frequência características do cérebro definidas por delta (0.5-4HZ), theta (4-8HZ), alpha (8-13HZ), e beta (acima de 13HZ). Os frames de tempo gerados pela separação em bandas são utilizados para alimentar as diversas arquiteturas que serão avaliadas.
关键词:Eletroencefalograma;Funções de ativação;Interface Cérebro Computador;Redes Neurais Artificiais